

The X ISNVD Annual Meeting

Measuring respiratory and cardiac influences on blood and cerebrospinal fluid flow with real-time MRI

Maria Marcella Laganà^{1,*}, Alice Pirastru^{1,2}, Sonia Di Tella^{1,3}, Francesca Ferrari², Laura Pelizzari¹, Marta Cazzoli¹, Noam Alperin⁴, Ning Jin⁵, Domenico Zacà⁶, Giuseppe Baselli⁷, Francesca Baglio¹

1. IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; 2. Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy; 3. Università Cattolica del Sacro Cuore, Department of Psychology, 20123 Milan, Italy; 4. University of Miami, USA; 5. MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Cleveland, Ohio, USA; 6. Siemens Healthcare, Milano, Italy

Maria Marcella Laganà – marcella.lagana@gmail.com

Introduction

- Venous and CSF flow alterations have been described in various neurological conditions¹
- Cerebrospinal fluid (CSF) flow: crucial role in the brain waste clearance (glymphatic system)²

BUT: 1) heart rate variability 2) respiration modulates venous return and CSF flow³ [thoracic pump]

1. Zivadinov et al., BMC Med 2013; Attier-Zmudka et al., Front Aging Neurosci 2019; Jakimovski et al., Fluids and Barriers of the CNS 2020 2. Iliff et al., Sci Transl Med 2012 3. Zamboni et al., J Appl Physiol 2012; Laganà et al., Ultrasound in

Lagana et al., Ultrasound in Medicine and Biology, 2017

Study	1 – Beat-by-beat variability
Aim 1 Aim 2	 Assess the blood and CSF beat-by-beat variability Compare the flow rate obtained using the RT-PC and the clinical cardiac-gated cine PC sequence Real-Time Phase-Contrast MRI to Monitor Cervical Blood and Cerebrospinal Fluid Flow Beat-by-Beat Variability. Baselli et al., Biosensors 2022, 12(6), 417
Study	v 2 – Blood and CSF flow drivers
Aim 1 Aim 2	 Testing the presence of the cardiac and respiratory drivers Assessing how different breathing modes affect the: (A) mean flow rate (B) respiratory and cardiac modulations to the flow rate
\square	Blood and cerebrospinal fluid flow oscillations measured with real-time phase-contrast MRI: breathing mode matters. Laganà et al., FBCNS. Preprint at Research Square [https://doi.org/10.21203/rs.3.rs-1722506/v1]

Materials and Methods Subjects MRI Scanner Healthy volunteers **3T Siemens Prisma** N=30 (21 females) 64-channel head-neck coil age: 26[19-57] years MRI acquisition protocol Temporal #time Venc Prototype RT-PC (acquired for 60 s) Measuring RT-PC Positioning resolution points (cm/s) **Respiration:** • (ms) - normal free breathing (F) Perpendicular to - paced normal (PN) A) blood 70 58.5 1021 neck vessels - paced deep breathing (PD) • Perpendicular to B) CSF 6 94 637 spinal cord Perpendicular to C) SSS 40 58.5 1021 the sup sag sinus

Materials and Methods

<u>Subjects</u> Healthy volunteers N=30 (21 females) age: 26[19-57] years

MRI Scanner 3T Siemens Prisma 64-channel head-neck coil

	07]700.0
MRI acquis	sition protocol

- Prototype RT-PC (acquired for 60 s)
- Respiration:
 - normal free breathing (F)
- paced normal (PN)
 paced deep breathing (PD)
- Physiologic signals:

 respiration with an abdominal band
 pulse with a pulse oximeter

Measuring	RT-PC Positioning	Venc (cm/s)	Temporal resolution (ms)	#time points
A) blood	Perpendicular to neck vessels	70	58.5	1021
B) CSF	Perpendicular to spinal cord	6	94	637
C) SSS	Perpendicular to the sup sag sinus	40	58.5	1021

7

Flow rate and its drivers

Magnitude and Phase images: neck blood

Flow rate and its drivers

Flow rate estimate

Flow rate and its drivers

Flow rate estimate

Study 1 – Beat-by-beat variability

Study 1 – Beat-by-beat variability

Autoregressive power spectral density

- → Modulations at the respiratory frequency and at a lower frequency (around 0.1 Hz): Mayer waves, seen both in the ECG and in continuous blood pressure curves
- → Oscillations of the sympathetic vasomotor tone of arterial blood vessels.
 - It has been suggested that Mayer waves trigger the liberation of endothelium-derived nitric oxide (NO) by cyclic changes of vascular shear stress¹
 - "the frequency shift of Mayer waves to lower frequencies is associated with an increased risk of developing established hypertension"²

¹Julien. Cardiovasc Research 2006 ²Takalo et al., American Journal of Hypertension 1999

Study 1 – Beat-by-beat variability

- Identification of diastolic peaks
- Artifact removal (removal of artifacted signal windows)
 - Alignment of cardiac cycles, beginning from diastolic peak \rightarrow median curve for each subject

Study 2 – Blood and CSF flow drivers

Study 2 – Blood and CSF flow drivers

- Power Density Spectrum of the flow rate
- Identification of main peaks
- Breathing rate and heart rate computed from physiologic signals
- Peak frequencies compared to breathing rate and heart rate

Study 2-3 – cardiac and respiratory modulations

Study 2-3 – cardiac and respiratory modulations

Study 2 – cervical flow rate modulations Group analysis: respiratory and cardiac components What happens from free (F) to paced normal (PN) to paced deep (PD) breathing? Respiratory component \uparrow (p<0.001) Cardiac component \downarrow (p<0.001) Cardiac > respiratory component (p<0.001) With the exception of non-significant comparisons written in the graph ns 1 1 ICAs IJVs 0.8 Cardiac NAUC 9°0 8°0 8°0 ↑IJVs -CSF ↑CSF ↓ CSF ↓ICAs -ICAs ↑ICAs ■IJVs **∫**°IJVs 0.2 CSF 0 0 F ΡN PD F ΡN PD ΡN PD F ΡN PD F ΡN PD ΡN PD F F ns

Study 3 – intracranial vein flow rate modulations

Respiratory/cardiac component increment from free (F) to paced normal (PN) to paced deep (PD) breathing

Group analysis: respiratory and cardiac modulation changes

31

.

Conclusions

Prototype RT-PC for measuring blood and CSF flow rates with **high temporal resolution allows to quantify** not only the cardiac but also the respiratory influence and the lowfrequency modulations.

The beat-to-beat changes with HR variability can be studied

Conclusions

Limitations:

- Only supine position
 - Separate acquisitions of blood and CSF flows
- Limited spatial resolution
- Image movement artifacts during deep breathing
- CO2 blood concentration was not measured

Acknowledgments						
	Francesca Baglio					
(U) Fondazione Don Carlo Gnocchi Onlus	Marta Cazzoli					
	Sonia Di Tella					
	Laura Pelizzari					
	Alice Pirastru					
UNIVERSITY OF MIAMI	Noam Alperin					
CIENCIC	Ning Jin					
Healthineers	Domenico Zacà					
	Giuseppe Baselli					
POLITECNICO MILANO 1863	Students: Ferrari, Fasani, Caglioni, Cavallini, Giudetti, Giudici					
	Maria Marcella Laganà – marcella.lagana@gmail.com					

RT-PC prototype

- · Developed for cardiovascular applications
- Echo planar imaging readout module
- Parallel acceleration in the temporal direction (T-PAT).
- Novel reconstruction algorithm, shared velocity encoding (SVE)* to improve temporal resolution →

2-sided velocity encoding: also called symmetric or bipolar encoding. It acquires a positive (k +) velocity encoded and a negative velocity encoded (k -) acquisition for each cardiac phase to produce the phase difference image.

Figure 4. (a) The conventional PC with 1-sided velocity encoding. Velocity information was extracted using the flow encoded (k_0) and flow compensated (k_0) data within the same cardiac phase. (b) SVE with 2-sided velocity encoding. Additional velocity frames (V_2 and V_4) are reconstructed by sharing the flow encoded data across cardiac phases to double the effective frame rate by a factor of 2.

*Lin H et al. Magn Reson Med. 2011

41

Flow rate and its drivers

Baselli...Lagana, Biosensors 2022

BBV					
			_		n-value of
Signal	All	Insp	Ехр	Δ Insp-Exsp	
Mean AF	7.39±1.72	7.32±1.65	7.26±1.64	0.0607	0.068
Mean VF	-7.28±2.28	-7.35±2.45	-7.25±2.23	-0.0954	0.216
Mean CSFF	0.111±0.134	0.085±0.098	0.093±0.134	-0.0084	0.772
Syst AF	10.29±2.44	10.20±2.42	10.08±2.39	0.1244	0.059
Syst VF	-9.08±3.14	-9.21±3.35	-9.16±3.17	-0.0493	0.524
Syst CSFF	-1.81±0.60	-1.87±0.60	-1.80±0.62	-0.0733	0.062
Dia AF	5.11±1.37	5.02±1.26	5.02±1.26	0.0063	0.875
Dia VF	-5.90±2.05	-5.96±2.13	-5.88±2.08	-0.0830	0.310
Dia CSFF	1.44±0.53	1.38±0.42	1.41±0.42	-0.0267	0.416

