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Introduction

* Venous and CSF flow alterations have been described in various neurological conditions*
*  Cerebrospinal fluid (CSF) flow: crucial role in the brain waste clearance (glymphatic system)?

I - 1. Zivadinov et al., BMC Med 2013;
) ™\ Attier-Zmudka et al., Front Aging
Conventional flow quantification: cine T .. [ N ’\jeucgosci 5019;Jakin;oxski etal,
. T / el Fluids and Barriers of the CNS 2020
cardiac-gated Phase Contrast (PC) MRI E || e S .
g (PC) ! 1A 2. lliff et al., Sci Trans! Med 2012
: o 3. Zamboni et al., J Appl Physiol
BUT: 8 L e % ewr L OF 2012;
1) heart rate variability Lagana et al., Ultrasound in
2) respiration modulates aattie aen il Ras s cant Medicine and Biology, 2017
venous return and CSF flow? %cardiac cycle
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Study 1 — Beat-by-beat variability

Aim 1 - Assess the blood and CSF beat-by-beat variability
Aim 2 - Compare the flow rate obtained using the RT-PC and the clinical cardiac-gated cine PC sequence

L.'J Real-Time Phase-Contrast MRI to Monitor Cervical Blood and Cerebrospinal Fluid Flow Beat-by-Beat Variability.
L J Baselli et al., Biosensors 2022, 12(6), 417

Study 2 — Blood and CSF flow drivers

Aim 1 - Testing the presence of the cardiac and respiratory drivers
Aim 2 - Assessing how different breathing modes affect the:

(A) mean flow rate

(B) respiratory and cardiac modulations to the flow rate

L.!JJ Blood and cerebrospinal fluid flow oscillations measured with real-time phase-contrast MRI: breathing mode
matters. Lagana et al., FBCNS. Preprint at Research Square [https://doi.org/10.21203/rs.3.rs-1722506/v1]

Study 3 — Intra and extracranial venous flow

Aim - Assessing cardiac and respiratory modulations on intracranial (sup sagittal sinus) and neck venous flow

L.IJ Cardiac and Respiratory influences on intracranial and neck venous flow measured with Real-Time Phase-Contrast
L J MRI. Lagana et al., Biosensors 2022.

5
Materials and Methods

Subjects MRI Scanner
Healthy volunteers 3T Siemens Prisma
N=30 (21 females) 64-channel head-neck coil

age: 26[19-57] years

MRI acquisition protocol

* Prototype RT-PC (acquired for 60 s) Measuring| RT-PC Positioning

* Respiration: (
- normal free breathing (F)

Temporal |#time
resolution |points
(ms)

Venc
cm/s)

Perpendicular to

- paced normal (PN) A) blood 70 58.5 1021
- paced deep breathing (PD) neck vessels
B) CSF Pe'rpendlcular to 6 94 637
spinal cord
Perpendicular to
C) SSS 40 58.5 1021

the sup sag sinus
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Materials and Methods

64-channel head-neck coil

Subjects ®o=o
Healthy volunteers "a‘

N=30 (21 females)
age: 26[19-57] years

MRI acquisition protocol

* Respiration:
- normal free breathing (F)
- paced normal (PN)
- paced deep breathing (PD)

* Physiologic signals:
- respiration with
an abdominal band
- pulse with a pulse |
oximeter

* Prototype RT-PC (acquired for 60 s)

MRI Scanner

Measuring| RT-PC Positioning (

A) blood
B) CSF

C) SSS

Perpendicular to
neck vessels
Perpendicular to
spinal cord
Perpendicular to
the sup sag sinus

Venc
cm/s)

70

Temporal |#time
resolution |points
(ms)

58.5 1021
94 637
58.5 1021

Flow rate and its drivers

Magnitude and Phase images: neck blood
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Flow rate and its drivers

Flow rate estimate using SPIN version 1.1.151211 (SpinTech MRI)

flow rate (ml/s)

15 T T T

ICAs

10 20 30
Time(s)

40 50

Flow rate estimate

pulse

flow rate (ml/s)

15 T T T

ICAs

5
Pulse

oF

ghal
MNNAIIANANAAANAMAANINNNNARANAASNAANS

NN ANNNN (NN, MMM M MNUWAMN

Time(s)

Heart beating influence

40 50

Flow rate and its drivers
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Flow rate and its drivers

Flow rate estimate
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Flow rate and its drivers

Flow rate estimate
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Flow rate and its drivers
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Study 1 — Beat-by-beat variability

» |dentification of diastolic peaks

ICAs
T |l M M \, H.lf Il
£ }MM bl Ml
E o | ///1dentification of
E diastolic peaks
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Study 1 — Beat-by-beat variability

» Identification of diastolic peaks

» Artifact removal (removal of artifacted signal windows)

: M M

Time [s]

Baselli et al., Biosensors 2022, 12(6), 417
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Study 1 — Beat-by-beat variability

« Identification of diastolic peaks
« Artifact removal (removal of artifacted signal windows)
« Study of the systolic/diastolic peaks, heart rate, beat-by-beat variability (autoregressive models, as for ECG signal*)
s *Baselli et al., IEEE Trans Biomed Eng, 1988
ICAs
10 04
ﬁ 1 1 "‘ l%'{ \P M“ " l ‘ 035 N\
7 - U o N
= s PN L\hj‘w U | ok ||
£ gl idie LJ,,: I Foas
E g 02 \
E Q ons \/ \\
= 0.1 \ ‘\‘
0.05 V% ‘ \\
00 027 ] D.;V_;i\;l)(;i - 0.8 1
Frequency (Hz)
Baselli et al., Biosensors 2022, 12(6), 417
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Study 1 — Beat-by-beat variability

04

035 N

osl | ] Autoregressive power spectral density
. 0 1 HZ Free breathing | . .
< Vo - Modulations at the respiratory frequency and at a lower frequency
E 02 l \ /o (around 0.1 Hz): Mayer waves, seen both in the ECG and in
@m R ] continuous blood pressure curves

. \ - Oscillations of the sympathetic vasomotor tone of arterial blood

\\ vessels.
00 X \\__ - It has been suggested that Mayer waves trigger the liberation of
= . endothelium-derived nitric oxide (NO) by cyclic changes of
| vascular shear stress'
* “ - "the frequency shift of Mayer waves to lower frequencies is
‘\

% | Deep breathing associated with an increased risk of developing
Ng 2 | established hypertension”?
?0 “,“ "Julien. Cardiovasc Research 2006
D 15 ‘\“‘\‘ 2Takalo et al., American Journal of Hypertension 1999

‘ |+ 02Hz

5 I\

00 - 0.2 — na na 0.8 1

Frequency (Hz)
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Study 1 — Beat-by-beat variability

» |dentification of diastolic peaks
« Artifact removal (removal of artifacted signal windows)
« Alignment of cardiac cycles, beginning from diastolic peak

) ICAs
1on ” ‘
: T ol
"o e R T Rt
10 Vs . ‘ ‘ . . o C
o] 10 20 Tlme Fs(] 40 50 50
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» Identification of diastolic peaks
» Artifact removal (removal of artifacted signal windows)
» Alignment of cardiac cycles, beginning from diastolic peak - median curve for each subject
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Study 1 — Comparison with conventional PC
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Study 1 — Comparison with conventional PC

(5perc, median, 95perc)
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Study 2 — Blood and CSF flow drivers

Power Spectral Density of the flow rate

Normalized Power CSF flow

100 150
Frequency (1/min)

23
Study 2 — Blood and CSF flow drivers

Power Spectral Density of the flow rate
Identification of main peaks

Normalized Power CSF flow

|
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\ /| N
P S AN
0 50 100 150 200
1 1 Frequency (1/min)

Main peaks
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Study 2 — Blood and CSF flow drivers

*  Power Spectral Density of the flow rate
* I|dentification of main peaks
* Breathing rate and heart rate computed from physiologic signals

Breathing rate (BR) from thoracic band

“ Heart rate (HR) from pulse oximeter

Normalized Power CSF flow
2
T

| . .
| FrequenC|es comparison
1 )\ N
. |  J , A

00 50 0 250

1 Frequency (1/min)

Main peaks <

25

*  Power Density Spectrum of the flow rate

* Identification of main peaks

* Breathing rate and heart rate computed from physiologic signals
* Peak frequencies compared to breathing rate and heart rate

.= \ * | Breathing rate (BR) from thoracic band
|
\

“ Heart rate (HR) from pulse oximeter

Normalized Power CSF flow
2
T

|

Frequencies comparison:
»  First peak: not significantly different

i A |

P A U ' Y E

’ * ‘;" S » = compared to the BR
requency (1/min) .
1 1 » Second peak: not different compared
Main peaks < to the HR

26
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Study 2-3 - cardiac and respiratory modulations
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* Area under the curve (AUC) of the respiratory and cardiac bands (power in [ml/s]?)
* AUC to the signal variance (NAUC) = adimensional index [0-1]

30
25 . s
Indices for quantifying the
™y 20 respiratory and cardiac modulations:
N\ *  NAUC_resp
— *  NAUC_card
é 15 AUC 1 +  Respiratory/Cardiac=
) cardiac band AUC_resp/AUC_card
10  Auc 1
— resp band | /
5 What happens with different
/ breathing modes?
ol '
1 2 3 4
Frequency(Hz)

27

Study 2-3 — cardiac and respiratory modulations

Single subject: JV flow rate spectrum

Normal breathing Paced Normal breathing Paced Deep breathing
30 30 30
25 25
=
> > o >
e s 20 - xoN s
&5 A &5
% 10 % 10 % 10
o . | topaced PRy ] oW
t: norma
5| Respiratory componen g 5
0 - 0 0
1 2 3 4 1 2 3 4 1 2 3
Frequency(Hz) Frequency(Hz) Frequency(Hz)
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Study 2-3 — cardiac and respiratory modulations
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Study 2 — cervical flow rate modulations

o
=)

o
o

Group analysis: respiratory and cardiac components

What happens from free (F) to paced normal (PN) to paced deep (PD) breathing?

*  Respiratory component 1 (p<0.001)
» Cardiac component | (p<0.001)

» Cardiac > respiratory component (p<0.001)

With the exception of non-significant comparisons written in the graph
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Study 3 — intracranial vein flow rate modulations

Group analysis: respiratory and cardiac modulation changes
Respiratory/cardiac component increment from free (F) to paced normal (PN) to paced deep (PD) breathing
=0.009
107 i
Corr [JVs

O 8¢t p=0. p=0.027
0 E— - =SSS
© 6t T1JVs
©
Q 4l
>
S Ll T
2 -
o nt - -
o 0
)
X ot

_4 1 1 1 1 1 1 ]

F PN PD F PN PD
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Study 2 — average cervical flow rate

Group analysis: flow rate and area changes

Blood average flow rate decrement (p<0.001 for all the paired comparisons)

w‘ v
- |

0.5

JICAs =ICAs =CSF
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B ga
1 T ==
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Average flow rate (ml/s)
o
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w
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o

-0.5
F PN PD F PN PD F PN PD
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Study 2 — average cervical flow rate

Group analysis: flow rate and area changes

» Blood average flow rate decrement (p<0.001 for all the paired comparisons)

w’ Y
- |

@

UCAS =ICAs =CSF

=)
=)

Average flow rate (ml/s)
o

HiT
1 BE=

0.5
F PN PD F PN PD

Average flow rate (ml/s)
o o

Average flow rate (ml/s)
o

o
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Study 3 — intracranial average flow rate

Group analysis: flow rate and cross-sectional area changes

Blood average flow rate decrement (p<0.001 for all the paired comparisons) from free (F) to paced normal (PN) to paced
deep (PD) breathing

IJVs SSS

Juy
1S}
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Conclusions

allows to quantify not only the cardiac but also the respiratory influence and the low-
frequency modulations.

Prototype RT-PC for measuring blood and CSF flow rates with high temporal resolution

The beat-to-beat changes with HR variability can be studied

35

Conclusions

allows to quantify not only the cardiac but also the respiratory influence and the low-
frequency modulations.

Prototype RT-PC for measuring blood and CSF flow rates with high temporal resolution

The beat-to-beat changes with HR variability can be studied

From normal to deep breathing:
mean flow |, (vasoreactive response, |, CO2 blood concentration?)

From normal to deep breathing:
respiratory modulation 1 (greater effect of the thoracic pump) and cardiac modulation {, for
cervical CSF, arterial and venous flow, but also for the superior sagittal sinus

36
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Conclusions

Limitations:

*  Only supine position

*  Separate acquisitions of blood and CSF flows
@ * Limited spatial resolution

* Image movement artifacts during deep breathing

* CO2 blood concentration was not measured

37

Conclusions

Limitations:
*  Only supine position

*  Separate acquisitions of blood and CSF flows
*  Limited spatial resolution

* Image movement artifacts during deep breathing
*  CO2 blood concentration was not measured

Clinical studies: RT-PC MRI used in pathological cases might allow to investigate how the flows in/out the brain
are modulated by breathing patterns.

*  Various pathologies might change respiration during sleep = effects on CSF circulation?

*  Arterial-venous-CSF flows are linked (Monro-Kellie): might venous alterations change CSF flow?

* Impact of respiration type for drug delivery through CSF

38
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RT-PC prototype

+ Developed for cardiovascular applications
+ Echo planar imaging readout module
» Parallel acceleration in the temporal .
direction (T-PAT). a1 2 3 , :
* Novel reconstruction algorithm, shared
velocity encoding (SVE)* to improve

temporal resolution > e e e . . .
2-sided velocity encoding: also

called symmetric or bipolar v L y r

encoding. It acquires a positive V vV
(k +) velocity encoded and a Vi Vs 5 Vi Vv, Vs Vy| Vs

negative velocity encoded (k - )

acquisition for each cardiac (@ (b)

phase to p_rOduce the phase Figure 4. (a) The conventional PC with 1-sided velocity encoding. Velocity information was extracted
difference Image. using the flow encoded (k.) and flow compensated (ko) data within the same cardiac phase. (b) SVE with
2-sided velocity encoding. Additional velocity frames (V, and V.,) are reconstructed by sharing the flow

encoded data across cardiac phases to double the effective frame rate by a factor of 2.

*Lin H et al. Magn Reson Med. 2011

41

Methods: positioning

Extracranial acquisitions Intracranial acquisition

Temporal

Measuring [ RT-PC Positioning resolution | points
(ms)

Perpendicular to

A) blood 70 58.5 1021
neck vessels
B) CSF Pe.rpendlcular to 6 94 637
spinal cord
C) sss Perpendicular to the 40 585 1021

sag sup sinus

42
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Flow rate and its drivers

Flow rate estimate
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Flow rate and its drivers
15 T T T T T
Arterial flow
decrement .
10 Systolic peaks _
|
| L
’\U? s %W "ll[ |l‘t| A ”\lll 'l" l lﬂl”‘,,‘l'lll]l,|l.‘x,‘lr|’”]l”l_|l‘!, ICAs
% I\ [UH‘\“MMN\\[; NN EAANAAAIAAAAMAAAARSANN MNPV AAAA
TR VAVAVAY:NY. VAV AVAWA 1 WA
= ) ’
2l W)
e i Venous flow increment (osa"sy S
1 _— 1 1 1 8’7’
= 10 T2 30 40 50
INSP EXPINSP Time(s)
44

22



BBV

Dia CSFF 1.44+0.53

7.32+1.65

7.2611.64
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Baselli...Lagana, Biosensors 2022
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Inspiration and expiration

Flow rate [mL/s]

T
Overall median
Insp median
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% of cardiac cycle

80 100
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Flow volumes in inspiration and expiration

CSF AUC in/exp-Deep
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Flow volumes in inspiration and expiration
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Flow rate: from free to deep breathing
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