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Introduction
• Venous and CSF flow alterations have been described in various neurological conditions1

• Cerebrospinal fluid (CSF) flow: crucial role in the brain waste clearance (glymphatic system)2

Conventional flow quantification: cine 
cardiac-gated Phase Contrast (PC) MRI

BUT:
1) heart rate variability 
2) respiration modulates 
venous return and CSF flow3

[thoracic pump]

1. Zivadinov et al., BMC Med 2013; 
Attier-Zmudka et al., Front Aging 
Neurosci 2019; Jakimovski et al., 
Fluids and Barriers of the CNS 2020 
2. Iliff et al., Sci Transl Med 2012
3. Zamboni et al., J Appl Physiol
2012; 
Laganà et al., Ultrasound in 
Medicine and Biology, 2017
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Introduction
• Venous and CSF flow alterations have been described in various neurological conditions1

• Cerebrospinal fluid (CSF) flow: crucial role in the brain waste clearance (glymphatic system)2

Real-time (RT) PC MRI4 for 
assessing flow rate respiratory 
modulations

1. Zivadinov et al., BMC Med 2013; 
Attier-Zmudka et al., Front Aging 
Neurosci 2019; Jakimovski et al., 
Fluids and Barriers of the CNS 2020 
2. Iliff et al., Sci Transl Med 2012
3. Zamboni et al., J Appl Physiol
2012;
Laganà et al., Ultrasound in 
Medicine and Biology, 2017
4. Ohno et al., Diagnostics 2020; 
Yildiz et al., JMRI 2017

Conventional flow quantification: cine 
cardiac-gated Phase Contrast (PC) MRI

BUT:
1) heart rate variability 
2) respiration modulates 
venous return and CSF flow3

[thoracic pump]
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Aims
Study 1 – Beat-by-beat variability

Aim 1 - Assess the blood and CSF beat-by-beat variability
Aim 2 - Compare the flow rate obtained using the RT-PC and the clinical cardiac-gated cine PC sequence

Real-Time Phase-Contrast MRI to Monitor Cervical Blood and Cerebrospinal Fluid Flow Beat-by-Beat Variability. 
Baselli et al., Biosensors 2022, 12(6), 417 

Study 2 – Blood and CSF flow drivers

Aim 1 - Testing the presence of the cardiac and respiratory drivers
Aim 2 - Assessing how different breathing modes affect the:

(A) mean flow rate
(B) respiratory and cardiac modulations to the flow rate
Blood and cerebrospinal fluid flow oscillations measured with real-time phase-contrast MRI: breathing mode 
matters. Laganà et al., FBCNS. Preprint at Research Square [https://doi.org/10.21203/rs.3.rs-1722506/v1]

Study 3 – Intra and extracranial venous flow 

Aim - Assessing cardiac and respiratory modulations on intracranial (sup sagittal sinus) and neck venous flow
Cardiac and Respiratory influences on intracranial and neck venous flow measured with Real-Time Phase-Contrast 
MRI. Laganà et al., Biosensors 2022.
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MRI acquisition protocol
• Prototype RT-PC (acquired for 60 s)
• Respiration:  

- normal free breathing (F)
- paced normal (PN)
- paced deep breathing (PD)

Materials and Methods
Subjects
Healthy volunteers
N=30 (21 females)
age: 26[19-57] years

MRI Scanner
3T Siemens Prisma
64-channel head-neck coil

Measuring RT-PC Positioning Venc 
(cm/s)

Temporal 
resolution 

(ms)

#time 
points

A) blood Perpendicular to 
neck vessels 70 58.5 1021

B) CSF Perpendicular to 
spinal cord 6 94 637

C) SSS Perpendicular to 
the sup sag sinus 40 58.5 1021

6



7/23/22

4

MRI acquisition protocol
• Prototype RT-PC (acquired for 60 s)
• Respiration:  

- normal free breathing (F)
- paced normal (PN)
- paced deep breathing (PD)

Materials and Methods
Subjects
Healthy volunteers
N=30 (21 females)
age: 26[19-57] years

MRI Scanner
3T Siemens Prisma
64-channel head-neck coil

Measuring RT-PC Positioning Venc 
(cm/s)

Temporal 
resolution 

(ms)

#time 
points

A) blood Perpendicular to 
neck vessels 70 58.5 1021

B) CSF Perpendicular to 
spinal cord 6 94 637

C) SSS Perpendicular to 
the sup sag sinus 40 58.5 1021

• Physiologic signals: 
- respiration with 
an abdominal band 
- pulse with a pulse 
oximeter
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Flow rate and its drivers

IJV

ICA

Magnitude and Phase images: neck blood
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Flow rate and its drivers

IJV

ICA

Flow rate estimate using SPIN version 1.1.151211 (SpinTech MRI)

IJV

ICA

ICAs ICAs
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Flow rate and its drivers

IJV

ICA

Flow rate estimate

IJV

ICA

ICAs
pulse

Heart beating influence

ICAs

Pulse signal
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Flow rate and its drivers

IJV

ICA

Flow rate estimate

IJV

ICA

ICAs
pulse
resp

Respiratory pump influence

ICAs

Pulse signal

Respiratory signal
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Flow rate and its drivers

IJV

ICA

Flow rate estimate

IJV

ICA

ICAs+LPF
pulse
resp

ICAs

Pulse signal

Respiratory signal

Low-pass-filtered ICAs

Respiratory pump influence
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Flow rate and its drivers

IJV

ICA

Flow rate estimate

IJV

ICA

ICAs+LPF
pulse
resp

IJVs+LPF

IJVs Low-pass-filtered IJVs

Cardiac and respiratory pump influence

INSP
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Flow rate and its drivers

SSSSSS

Superior sagittal sinus

Cervical cerebrospinal fluid flow

CSF CSF

SSS
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Study 1 – Beat-by-beat variability
• Identification of diastolic peaks

Time [s]

Fl
ow

 ra
te

 [m
l/s

]

ICAs

Identification of 
diastolic peaks

IJVs
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Study 1 – Beat-by-beat variability
• Identification of diastolic peaks
• Artifact removal (removal of artifacted signal windows)

Time [s]

Fl
ow

 ra
te

 [m
l/s

]

ICAs

IJVs

Artifact removal

Baselli et al., Biosensors 2022, 12(6), 417 
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Study 1 – Beat-by-beat variability
• Identification of diastolic peaks
• Artifact removal (removal of artifacted signal windows)
• Study of the systolic/diastolic peaks, heart rate, beat-by-beat variability (autoregressive models, as for ECG signal*) 

Time [s]

Fl
ow

 ra
te

 [m
l/s

]

ICAs

IJVs

Artifact removal

Baselli et al., Biosensors 2022, 12(6), 417 

Frequency (Hz)

*Baselli et al., IEEE Trans Biomed Eng, 1988
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Study 1 – Beat-by-beat variability

Autoregressive power spectral density

Frequency (Hz)

Free breathing

Deep breathing

0.1 Hz
à Modulations at the respiratory frequency and at a lower frequency

(around 0.1 Hz): Mayer waves, seen both in the ECG and in 
continuous blood pressure curves

à Oscillations of the sympathetic vasomotor tone of arterial blood 
vessels.
- It has been suggested that Mayer waves trigger the liberation of 

endothelium-derived nitric oxide (NO) by cyclic changes of 
vascular shear stress1

- "the frequency shift of Mayer waves to lower frequencies is 
associated with an increased risk of developing 
established hypertension” 2

1Julien. Cardiovasc Research 2006
2Takalo et al., American Journal of Hypertension 1999

0.2 Hz
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Study 1 – Beat-by-beat variability
• Identification of diastolic peaks
• Artifact removal (removal of artifacted signal windows)
• Alignment of cardiac cycles, beginning from diastolic peak

Time [s]

Fl
ow

 ra
te

 [m
l/s

]

ICAs

IJVs
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Study 1 – Beat-by-beat variability
• Identification of diastolic peaks
• Artifact removal (removal of artifacted signal windows)
• Alignment of cardiac cycles, beginning from diastolic peak à median curve for each subject

Time [s]

Fl
ow

 ra
te

 [m
l/s

]

ICAs

IJVs

Median curve, 5th and 95th percentiles 

Baselli et al., Biosensors 2022, 12(6), 417 

median cardiac cycle
5th and 95th percentiles
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Study 1 – Comparison with conventional PC
Alignement of cardiac cycles from the 60s-RT-PC data 
(5perc, median, 95perc)

CSFICA IJV

___RT-PC median cardiac cycle
---- RT-PC 5-95 percentiles
___clinical sequence
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Study 1 – Comparison with conventional PC
Alignement of cardiac cycles from the 60s-RT-PC data 
(5perc, median, 95perc)

CSFICAs IJVs

Comparison with the flow rate derived using the 
conventional PC-MRI sequence

___RT-PC median cardiac cycle
---- RT-PC 5-95 percentiles
___clinical sequence
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Study 2 – Blood and CSF flow drivers
• Power Spectral Density of the flow rate

23

Study 2 – Blood and CSF flow drivers
• Power Spectral Density of the flow rate
• Identification of main peaks

Main peaks

24
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Study 2 – Blood and CSF flow drivers
• Power Spectral Density of the flow rate
• Identification of main peaks
• Breathing rate and heart rate computed from physiologic signals

Main peaks

Breathing rate (BR) from thoracic band

Heart rate (HR) from pulse oximeter

Frequencies comparison
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Study 2 – Blood and CSF flow drivers
• Power Density Spectrum of the flow rate
• Identification of main peaks
• Breathing rate and heart rate computed from physiologic signals
• Peak frequencies compared to breathing rate and heart rate

Main peaks

Breathing rate (BR) from thoracic band

Heart rate (HR) from pulse oximeter

Frequencies comparison: 
• First peak: not significantly different

compared to the BR
• Second peak: not different compared

to the HR

26
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Study 2-3 – cardiac and respiratory modulations
• Area under the curve (AUC) of the respiratory and cardiac bands (power in [ml/s]2)
• AUC to the signal variance (NAUC) à adimensional index [0-1]

AUC 
cardiac band

AUC 
resp band

Indices for quantifying the 
respiratory and cardiac modulations:
• NAUC_resp
• NAUC_card
• Respiratory/Cardiac=

AUC_resp/AUC_card

What happens with different
breathing modes?

27

Single subject: IJV flow rate spectrum

Normal breathing Paced Deep breathing

Respiratory component: normal to paced

Respiratory component

Paced Normal breathing

Study 2-3 – cardiac and respiratory modulations
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Single subject: IJV flow rate spectrum

Normal breathing Paced Deep breathing

Respiratory component: normal to paced

Respiratory component

Paced Normal breathing

Cardiac component

Study 2-3 – cardiac and respiratory modulations

29

Group analysis: respiratory and cardiac components

ns

Study 2 – cervical flow rate modulations

What happens from free (F) to paced normal (PN) to paced deep (PD) breathing?
• Respiratory component ↑ (p<0.001)
• Cardiac component ↓ (p<0.001)
• Cardiac > respiratory component (p<0.001)
With the exception of non-significant comparisons written in the graph

ns

↑ICAs

↑IJVs

↑CSF
↓ICAs

↓ IJVs

↓ CSF
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Study 3 – intracranial vein flow rate modulations
Group analysis: respiratory and cardiac modulation changes

• Respiratory/cardiac component increment from free (F) to paced normal (PN) to paced deep (PD) breathing

p=0.027

p=0.009

p=0.027

↑IJVs
↑SSS
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Study 2 – average cervical flow rate
Group analysis: flow rate and area changes

• Blood average flow rate decrement (p<0.001 for all the paired comparisons)

↓ICAs ↓ IJVs
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Study 2 – average cervical flow rate

p=0.038

Group analysis: flow rate and area changes

• Blood average flow rate decrement (p<0.001 for all the paired comparisons)

• Cross-sectional area decrement for ICA only (smallest in deep breathing)

↓ICAs ↓ IJVs
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Study 3 – intracranial average flow rate
Group analysis: flow rate and cross-sectional area changes

• Blood average flow rate decrement (p<0.001 for all the paired comparisons) from free (F) to paced normal (PN) to paced
deep (PD) breathing

• Cross-sectional areas do not change

↓IJVs ↓ SSS
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Conclusions

Prototype RT-PC for measuring blood and CSF flow rates with high temporal resolution 
allows to quantify not only the cardiac but also the respiratory influence and the low-
frequency modulations.

The beat-to-beat changes with HR variability can be studied

35

From normal to deep breathing: 
respiratory modulation ↑ (greater effect of the thoracic pump) and cardiac modulation ↓ for 
cervical CSF, arterial and venous flow, but also for the superior sagittal sinus

From normal to deep breathing: 
mean flow ↓ (vasoreactive response, ↓ CO2 blood concentration?)

The beat-to-beat changes with HR variability can be studied

Conclusions

Prototype RT-PC for measuring blood and CSF flow rates with high temporal resolution 
allows to quantify not only the cardiac but also the respiratory influence and the low-
frequency modulations.

36



7/23/22

19

Limitations: 
• Only supine position
• Separate acquisitions of blood and CSF flows
• Limited spatial resolution
• Image movement artifacts during deep breathing
• CO2 blood concentration was not measured

Conclusions

37

Clinical studies: RT-PC MRI used in pathological cases might allow to investigate how the flows in/out the brain 
are modulated by breathing patterns. 
• Various pathologies might change respiration during sleep à effects on CSF circulation?
• Arterial-venous-CSF flows are linked (Monro-Kellie): might venous alterations change CSF flow?
• Impact of respiration type for drug delivery through CSF

Limitations: 
• Only supine position
• Separate acquisitions of blood and CSF flows
• Limited spatial resolution
• Image movement artifacts during deep breathing
• CO2 blood concentration was not measured

Conclusions

38
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RT-PC prototype

*Lin H et al. Magn Reson Med. 2011

• Developed for cardiovascular applications
• Echo  planar  imaging readout module
• Parallel acceleration in the temporal  

direction (T-PAT).  
• Novel reconstruction  algorithm,  shared  

velocity  encoding  (SVE)* to  improve 
temporal resolution à

2-sided velocity encoding: also 
called symmetric or bipolar 
encoding. It acquires a positive 
(k + ) velocity encoded and a 
negative velocity encoded (k - ) 
acquisition for each cardiac 
phase to produce the phase 
difference image.

41

Methods: positioning

B

A

Extracranial acquisitions

C

Intracranial acquisition

Measuring RT-PC Positioning
Venc 

(cm/s)

Temporal 
resolution 

(ms)

#time 
points

A) blood
Perpendicular to 
neck vessels 70 58.5 1021

B) CSF Perpendicular to 
spinal cord 6 94 637

C) SSS Perpendicular to the 
sag sup sinus 40 58.5 1021
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Flow rate and its drivers

IJV

ICA

Flow rate estimate

IJV

ICA

ICAs+LPF
pulse
resp

IJVs+LPF

Zoomed signal (signal portion from 45s to 55s)
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Flow rate and its drivers

ins
pir

ati
on

Venous flow increment

Arterial flow 
decrement

ICAs
pulse

respiration

IJVs

Systolic peaks

Venous increment

(peaks)

INSP INSP
EXP
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BBV

Signal All Insp Exp ∆ Insp-Exsp p-value of ∆

Mean AF 7.39±1.72 7.32±1.65 7.26±1.64 0.0607 0.068
Mean VF -7.28±2.28 -7.35±2.45 -7.25±2.23 -0.0954 0.216
Mean CSFF 0.111±0.134 0.085±0.098 0.093±0.134 -0.0084 0.772
Syst AF 10.29±2.44 10.20±2.42 10.08±2.39 0.1244 0.059
Syst VF -9.08±3.14 -9.21±3.35 -9.16±3.17 -0.0493 0.524
Syst CSFF -1.81±0.60 -1.87±0.60 -1.80±0.62 -0.0733 0.062
Dia AF 5.11±1.37 5.02±1.26 5.02±1.26 0.0063 0.875
Dia VF -5.90±2.05 -5.96±2.13 -5.88±2.08 -0.0830 0.310
Dia CSFF 1.44±0.53 1.38±0.42 1.41±0.42 -0.0267 0.416

Baselli…Lagana, Biosensors 2022
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Inspiration and expiration
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Flow volumes in inspiration and expiration
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Flow volumes in inspiration and expiration
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Flow volumes in inspiration and expiration
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Flow rate: from free to deep breathing
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