

aculty	Jeff Hausdorff, PhD	Shinya Tasaki, PhD			
uja Agarwal, PhD	Duke Han, PhD	Ricardo Vialle, PhD	THANK YOU TO		
eelum T. Aggarwal, MD	Bryan James, PhD	Tianhao Wang, PhD			
onstantinos Arfanakis, PhD	Alifiya Kapasi, PhD	Yanling Wang, MD, PhD			
oe Arvanitakis, MD, MS, EMBA	Namhee Kim, PhD	Robert Wilson, PhD	Research Participants		
isa L. Barnes, PhD	Melissa Lamar, PhD	Jishu Xu, MA	Cohort study participants		
avid A. Bennett, MD	Brittney Lange-Maia, PhD	Lei Yu, PhD	Clinic participants		
atherine Blizinsky, PhD	Katia Lopes, PhD	Andrea Zammit, PhD	Funding		
atricia A. Boyle, PhD	Sue Leurgans, PhD		National Institutes of Health		
ron Buchman, MD	Lydia K. Manning, PhD		minois Department Public Health		
na Capuano, PhD	Rupal Mehta, MD	Staff	Collaborators		
ob Dawe, PhD	Sukriti Nag, MD, PhD	~150 staff	Nationally		
hil De Jager, MD, PhD	Victoria Poole, PhD		Internationally		
ose Farfel, MD, PhD	Shahram Oveisgharan, MD				
ebra Fleischman, PhD	Julie A. Schneider, MD, MS				
hris Gaiteri, PhD	Raj C. Shah, MD				
rystal Glover, PhD	Ajay Sood, MD, PhD				
rancine Grodstein, ScD	Sandra Swantek, MD				

Context: Complex diseases with large public health impact

5

DEMENTIA All-cause dementia (most commonly attributed to Alzheimer's disease or Vascular Dementia, but most often mixed pathologies): 47 million persons worldwide, mostly elderly Projected to affect 131 million by 2050 Dementia = enormous and rapidly growing public health and societal burden worldwide - urgent need for more effective approaches to address Max I Rever Diagnosis and Management of Dementia: Review

A potentially modifiable risk factor for dementia: DIABETES MELLITUS (DM)

- Epidemiology of DM in the US:
 - 7th leading cause of death (CDC)
 - · Associated with significant medical, psychological, and societal costs
 - Very common, especially with aging: affects 1/5 older persons
 - Increasingly common
 - Potential times of intervention at all stages: no insulin resistance (normal), pre-diabetes stage, and frank diabetes (especially if early stage)
- Clinical data linking DM with
 - · Cognitive impairment and cognitive decline
 - More recent large epidemiologic studies consistently showing there is a **TWO-FOLD increased risk of dementia**

OBJECTIVE: To elucidate the relation of

diabetes and insulin resistance to brain structure and function (cognition)

Neuropsychological tests	ROS	MAP	MARS	COMPOSITE	
MMSE	Х	Х	Х		
Complex Ideational Material	Х	Х	Х	MEASURES:	
Episodic Memory					
Logical Memory Ia	Х	Х	Х	Global Cognition	
Logical Memroy IIa	Х	Х	Х		
East Boston Story Immediate recall	Х	Х	Х	Episodic Memory	
East Boston Story Delayed recall	Х	Х	Х	Semantic Memory	
Word List Memory	Х	Х	Х	Cernantic Mernory	
Word List Recall	Х	Х	Х	Working memory	
Word List Recognition	Х	Х	Х	Deveentuel encod	
Semantic Memory				Perceptual speed	
Boston Naming Test	Х	Х	Х	Visuospatial ability	
Verbal Fluency	Х	Х	Х	visuospaliai ability	
National Adult Reading Test	Х	Х			
Working Memory				CLINICAL	
Digit Span Forward	Х	Х	Х		
Digit Span Backward	Х	Х	Х	DIAGNUSES.	
Digit Span Ordering	Х	Х	Х		
Perceptual Speed				Dementia	
Symbol Digit	Х	Х	Х		
Number Comparison	Х	Х	Х	Alzheimer's disease	
Stroop Word Reading		Х	Х	Mild oog impoirmont	
Stroop Word Color Naming		Х	Х	wind cog impairment	
Visuospatial Ability					
Line Orientation	Х	Х	Х	Wilson et al., Psych Aging 2002	
Progressive Matrices	Х	Х	Х	Barnes et al., JINS 2016	

Diabetes, cognitive impairment, cognitive decline, and incident dementia

Brain insulin signaling, Alzheimer's disease pathology, and cognitive function

R01 NS084965 (BIRA)

	Total	Diabetes	No Diabetes	
	n =150	n =75	n =75	
DEMOGRAPHIC				
Age-at-death, years (SD)	86.6 (6.1)	86.6 (5.9)	86.7 (6.3)	
Women, n (%)	72 (48%)	36 (48%)	36 (48%)	
Education, years (SD)	18.1 (3.3)	18.2 (3.1)	18.1 (3.4)	
COGNITIVE SCORE **				
Global cognitive function score	-0.871 (1.203)	-0.920 (1.183)	-0.822 (1.229)	
Perceptual speed	-1.229 (1.202)	-1.341 (1.186)	-1.117 (1.215)	
Working memory	-0.607 (1.028)	-0.650 (1.047)	-0.564 (1.015)	
Episodic memory	-0.828 (1.465)	-0.876 (1.459)	-0.781 (1.48)	
Semantic memory	-0.792 (1.367)	-0.779 (1.268)	-0.804 (1.468)	
Visuospatial ability	-0.668 (0.940)	-0.640 (0.914)	-0.697 (0.97)	
NEUROPATHOLOGIC				
Alzheimer's disease pathology				
Global score, median (SD)	0.6 (0.6)	0.7 (0.6)	0.6 (0.5)	
Amyloid score, median (SD)	1.6 (0.2,4.5)	2 (0.3,5.3)	1.4 (0.2,4.1)	
Tangles score, median (SD)	3.2 (1.2,7.4)	3.5 (1.1,7.8)	2.7 (1.2,7)	

Subjects with and without diabetes were matched by age and sex (n= 150)

Ann Neurol 2020 Subjects from ROS

RESULTS

While no other molecular measures were significant, brain pT³⁰⁸AKT1/total AKT1 (by ELISA) was associated with

- More AD pathology: Global measure Amyloid burden Tangle density
- Lower cognition: Global cognition (proximate to death)

Overall

LIMITATIONS

- Diabetes not well characterized
- Conditions are <u>complex</u> (metabolic syndrome)
- Pathophysiologic <u>mechanisms</u> linking diabetes to dementia needs further elucidation, including mediation effects
- Observational study with crosssectional design does <u>not establish</u> <u>causation</u>

STRENGTHS

- <u>Prospective</u> design with up to 29 years of annual follow-up in large cohorts of community-dwelling older persons
- High follow-up rates (90-95% range)
- Detailed <u>neuropsychologial test data</u> with summary measures of global cognition/domains, and dementia classification
- High autopsy rates (85-90% range), with systematically-collected <u>neuropathologic data</u>

Peripheral and central (brain) insulin signaling

RF1 AG059621 (PABIR)

(data collection ongoing)

- Overall goal:
 - to examine associations of peripheral (serum, muscle) with central (brain) insulin resistance, and
 - the associations of peripheral and central insulin resistance with AD neuropathology and cognitive function
- Design: Using MAP biospecimens and data, collect ELISA measures and untargeted proteomics and phosphoproteomics, and other measures

27

Metformin, cognitive function, and brain pathology

R01 NS084965 (BIRA) and RF1 AG059621 (PABIR)

(Sood A. et al., manuscript in preparation) Subjects from ROSMAPMARS

27

	Total		Non metforn	Non metformin users		Metformin users			
	All	Autopsy	All	Autopsy	All	Autopsy			
CHARACTERISTIC	n=4126	n=1715	n=3637	n=1574	n= 489	n=141			
Demographics									
Age at bl, years	77.36	80.13	77.82	80.38	73.96	77.31			
(+/- SD)	(7.74)	(7.03)	(7.71)	(6.93)	(7.09)	(7.50)			
Men, n	1084	544	923	483	161	61			
(%)	(26%)	(32%)	(25%)	(31%)	(33%)	(43%)			
Education, years	16.15	16.30	16.23	16.36	15.55	15.54			
(+/- SD)	(3.71)	(3.59)	(3.63)	(3.57)	(4.21)	(3.81)			
		Clinica	al variables at baseline						
Diabetes, n	638	213	282	126	356	87			
(%)	(15%)	(12%)	(8%)	(8%)	(73%)	(62%)			
History of hypertension, n	2232	815	1892	730	340	85			
(%)	(54%)	(48%)	(52%)	(46%)	(70%)	(60%)			
		Medio	cations use at baseline						
Insulin, n	116	49	73	36	43	13			
(%)	(3%)	(3%)	(2%)	(2%)	(9%)	(9%)			
Oral hypoglycemic, n	370	112	96	49	274	63			
(%)	(9%)	(7%)	(3%)	(3%)	(56%)	(45% ⁸			

<section-header><text><text><section-header><text><text><list-item><list-item><text><text>

Epigenetic marker

RF1 AG074549 (REVA)

- Overall goal: to elucidate epigenetic mechanisms linking vascular risk factors (DM, BP, and BMI) to AD/ADRD clinical and pathological phenotypes, in older Whites and Blacks
- Design: discovery and validation of 5hmC scores in serum and brain, elucidation of biologic pathways and racial differences in DM and dementia (using MAP and MARS cohorts)

